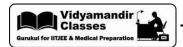


(C) can not form cyclic intermediate with ${\rm HIO_4}$ as it is a trans type diol. Hence it does not undergo cleavage.

117.(A) x will be same as number of bonds which can be cleaved

118.(C)


 $\textbf{120.(AB)} \qquad \text{HIO}_4 \ \ \text{will not oxidise non-viccinal diols and not used for cleavage of ethers.}$

121.(B) Visualise mechanism of Reimer Tiemann reaction.

Note that bond energy of C-D is higher than C-H, so during IMPT, it is easier to break C-H bond.

122.(ABCD) ${\rm MnO_2}$ oxidise only allylic and benzylic alcohols.

$$\begin{array}{c|c} \text{OH} & \text{C}_6\text{H}_5 \\ \text{OH} & \text{OH} \end{array}$$

123.(A)

$$\begin{array}{c} CH_3 \\ OH \\ \hline \\ -H_2O \end{array} \\ \begin{array}{c} H^+ \\ H^- \\ Shift \end{array} \\ \begin{array}{c} Me \\ Me \\ Me \end{array} \\ \begin{array}{c} Me \\ Me \\ Me \end{array} \\ \begin{array}{c} Me \\ Me \\ Me \end{array}$$

Alcohols also give F.C. alkylation.

124.(ABC)

(A)
$$Br + Na\bar{o} NO_2 S_{N^2} NO_2$$
Benzyl bromide

(B) Me
$$\overline{O}$$
Na⁺ + (CH₃)₂SO₄ $\xrightarrow{S_N 2}$ Me O Me + CH₃OSO₂ONa Dimethyl sulphate

(C)
$$Me^{ONa^{+}} + H_{3}C \longrightarrow O \longrightarrow SO_{2}C_{6}H_{4}CH_{3} \longrightarrow Me \longrightarrow O$$
(Sulphonate)

(CH₃)₃Br + CH₃CH₂ONa
$$\xrightarrow{E2}$$
 CH₂ = C(CH₃)₂

125. [A-p, q, r]

[B-p]

[C-p, s]

[D-r, s]